
Obstacle Avoidance and Color Detection using Image
Segmentation

Kamruzzaman Rony (kr334) and Norris Xu (nx26)

Abstract

Rovio, produced by WowWee, is a small robot
equipped with a webcam, IR sensor, base station local-
ization signal, and a unique wheel setup allowing it to
move sideways and diagonally as well as forward and
backward. The goal of this project is to program Rovio
to successfully avoid any obstacles while navigating an
indoor environment and simultaneously searching for a
color-coded target object.

For this project, we used only Rovio’s webcam. We
used some median filters to smooth the image and then
applied image segmentation on the smoothed image; we
then decided which of the segments was the floor and
used the position of other segments to see where the ob-
stacles were and avoid them. We used a simple color
filter to find the target object and programmed Rovio to
move sideways to avoid obstacles while keeping the tar-
get in view. We tested our code in a variety of different
situations and the success rate was very high: in almost
all trials, Rovio was able to successfully avoid obstacles
and find the target.

1. INTRODUCTION

1.1. Robot

The robot that we used in our project was Rovio,
which is produced by WowWee. Rovio is a small robot
with a web interface. Its sensors include a webcam,
simple IR sensor (binary: either there is an obstacle in
front of Rovio, or there isn’t), and localization using a
signal projected onto the ceiling by the base station. It
also has a unique wheel setup which allows it to move
in the eight major compass directions, and can raise its
camera. However, we used only the wheels and the we-
bcam for our project.

Figure 1: Rovio in a typical environment

1.2. Environment

Rovio is designed for indoor environments only, so
those are the environments we designed our algorithm
to work in. Our typical test environment had a car-
peted, level floor and was well lit by overhead fluores-
cent lighting; we had a wide range of obstacles includ-
ing chairs, tables, cardboard boxes, flashlights, cups,
other Rovios, and a bright orange cone which was our
target object.

1.3. Goal

Our goal was to get Rovio to navigate its environ-
ment and avoid obstacles while searching for the target
object, using only its webcam for sensor data. Once
Rovio sees the target object, it should drive towards it
while continuing to avoid obstacles, and once it gets
close enough (we defined “close enough” as about a
third of a meter) to the target, it should halt.

1.4. Method Overview

Since our sensor data consisted of images, we used
image processing to accomplish our goal. Our algo-
rithm was based on image segmentation, augmented
with median filters to eliminate noise and improve the



segmentation algorithm accuracy. We then classified
each of the segments into one of three categories: the
segment was either the floor, the target object, or an ob-
stacle. The robot would then behave accordingly: if
there was an obstacle in front of it, it would navigate
to avoid the obstacle; if it sees the target it will try to
move towards it or stop if close enough; otherwise, it
will simply go straight forward.

2. RELATED WORK

A great deal of research has been done in the field
of robotics and computer vision for obstacle detection
and avoidance using monocular vision [2] and stereo
vision sensors [3] as well. In recent years, using the
monocular vision has been proved to be a very efficient
method for obstacle avoidance and navigation. Many
different types of methods have been used for obstacle
detection and avoidance ranging from appearance based
obstacle detection [4] to obstacle avoidance with local-
ization and mapping using visual sonar [5]. Our project
uses graph based image segmentation [1] along with our
own classification algorithm for obstacle detection. To
avoid obstacles and to reach the target object we also
used our own color detection and navigation control al-
gorithm. To detect obstacles using monocular vision
Ulrich [4] classifies each individual image pixel belong-
ing to either the obstacles or the ground based on that
pixel’s color appearance. Lenser [5] uses visual sonar
for obstacle detection, localization and mapping by de-
veloping an algorithm that takes monocular vision as its
input and generates output like a sonar sensor. Visual
sonar has the capability of detecting modeled objects
and obstacles in its course and also avoiding unmod-
eled or unknown objects and obstacles. The approaches
that Choi [6] and Wang [7] employed for obstacle detec-
tion (differentiating between the floor and other objects
in the image) are similar to our (image segmentation)
approach.

3. METHOD

3.1. Segmentation

Our method first attempted to find all objects seen
by Rovio’s camera. Since we are only avoiding the ob-
stacles, this part does not have to be very precise — we
simply need to know the general location and size of
the objects; we do not need to know their exact shape
or other details. Thus, we first applied a very strong
median filter to smooth the image out and help elim-
inate noise as well as give textured surfaces (such as
the carpet) a more uniform appearance, to improve the

accuracy of the segmentation algorithm [1]. We then
ran the image segmentation algorithm on this filtered
image, and then ran another median filter on the seg-
mented image. This second median filter’s purpose was
to help reduce erroneous segments, which occasionally
appeared on the floor, as well as to reduce the number of
segments overall and thereby reduce the complexity of
the segmented image. The filter eliminated very small
or very thin segments; for example, boundaries between
objects tended to become their own very thin segment,
which the filter removed. Again, we only need a gen-
eral idea of where the objects are, so we could afford to
apply a very strong median filter.

3.2. Interpretation

Since Rovio would be operating in environments
where the floor is flat, and Rovio’s camera is parallel
to the ground, we divided this filtered segmented image
into two halves: a top half and a bottom half. The line
dividing the two halves is the horizon, and it is not pos-
sible for the floor to be seen in the top half (assuming
that it is flat). We constructed a list of segments; for
each segment, we stored its bounding box in the image
as well as its size in pixels.

3.2.1. Obstacle Avoidance. We assigned the floor to
be the largest (by number of pixels) segment in the bot-
tom half. This method worked most of the time; how-
ever, in the case where an object is very close to Rovio
and occludes most its field of view, this method would
erroneously assume that this object is the floor. To han-
dle this case, we introduced a heuristic where if a suffi-
ciently large part of the “floor” was in the top half of the
image, then the algorithm would decide that this seg-
ment was in fact a nearby object and reverse away from
it instead. We defined “sufficiently large” to be 70%:
if the number of pixels of “floor” in the top half was
at least 70% of the number of pixels of “floor” in the
bottom half, then we would reverse. In our trials, this
number worked very well.

If we did not reverse, then we need to decide if it is
possible to go forward without hitting anything. We de-
fined a rectangle in the middle of the image (annotated
in Fig. 3 as the obstacle rectangle), and checked to see if
any non-floor segments intersected it (intersection tests
are very simple since we have the segment bounding
boxes; this is less accurate than a pixel-by-pixel test but
we can afford to be imprecise). The rectangle is offset
from the bottom of the image to avoid erroneous carpet
segments, which tended to appear in the very bottom of
the image (probably due to camera focal effects); one
such segment is visible at the very bottom of Fig. 2d.



(a) Raw image (b) Filtered image (c) Segmented image (d) Filtered Segmented image

Figure 2: Results of image segmentation

If nothing intersects the rectangle, then we can move
forward.

If something did intersect the rectangle, then we
need to turn. We have a choice between left and right,
and want to pick the one that requires the least amount
of turning before we can move forward again. To do
this, we simply look at the left and right bounds of all
of the obstacles in the lower half (we ignore the upper
half of the image since that is above the horizon and thus
background), and find the leftmost and rightmost obsta-
cle boundaries. We turn towards whichever of these is
closest to the center of the image.

3.2.2. Target Tracking. Besides avoiding the obsta-
cles, we will also want to move towards the target ob-
ject, if we can see it. To determine whether or not we
can see the target, we used a simple color detection al-
gorithm which looks for pixels in the image that are
close to a given target color (we define “close enough”
as the sum of the squares of the differences of intensities
in red, green, and blue is under a specified threshold,
which we tuned through experimentation). The color
detection algorithm is run on the raw image, since this
time we do care about the shape of the detected object,
as knowing the exact shape will greatly improve accu-
racy of the next step. We also only run the detection
algorithm on the bottom half of the image, since again
assuming a flat floor, any objects should have at least
a few pixels in the bottom half, depending on how far
away they are. The next step is matching a segment
with the detected pixels. Again, we use the unfiltered
segmented image for matching, since it is more accu-
rate. We simply count how many detected pixels each
segment contains, and pick the target segment to be the
one with the most detected pixels.

We then find the target segment in the blurred seg-
mented image by looking for the segment with the same
color. Finally, we want to move towards the target while
continuing to avoid obstacles. First of all, we want to
keep the target centered: we try to keep the centroid of

the target segment within a triangular region (annotated
in Fig. 3 as the target bounds). To do this, we will try to
move forward only if the centroid is within the region; if
it is outside of the region, we will move diagonally for-
ward to move the centroid back within the region (orig-
inally we attempted to get Rovio to turn very slightly,
but it turns far too quickly to be able to center the tar-
get). If we are very close to the target, then instead of
moving diagonally forward, we slide sideways instead.
If the target is sufficiently close, then we’ve reached the
target and stop. We check the proximity of the target by
measuring the distance between the bottom edge of the
target segment and the bottom of the image.

Of course, we must do all of the above while con-
tinuing to avoid obstacles. If we can see the target, then
we only care about obstacles between us and the tar-
get; i.e. obstacles with a bottom edge that is lower than
the bottom edge of the target. We can safely ignore all
other obstacles since they are behind the target. We do
the same check as before on this reduced obstacle set to
see if we are able to move forward. If we are not able
to move forward, then there is an obstacle between us
and the target and we must dodge it. We check the left-
most and rightmost obstacle boundaries, as before, but
this time, if we can see the end of the obstacle (that is,
the obstacle does not extend all the way to the edge of
the image), then we will sidestep it and thus keep the
target in view. If the obstacle does extend all the way to
the edge, then we can’t be certain that we can sidestep
it, so we just turn as before and hopefully find our way
around it to the target.

4. TRIALS

We tested Rovio on three courses: a simple U-
shaped obstacle course (Fig. 4a), another U-shaped
course with low barriers added to test the algorithm’s
sidestep routine and see if Rovio could successfully
avoid the obstacle while keeping the target in view and
continuing to move towards it (Fig. 4b), and an open



Figure 3: Illustration of object bounds

environment that was very large and had many obsta-
cles; it was in fact a classroom (Fig. 4c). We ran many
trials on each course; without targets, Rovio’s obstacle
avoidance was almost perfect (the only time it ever hit
anything was when the obstacle was in front of Rovio
and sufficiently far to the side that it was not seen at
all by the camera, yet close enough to hit Rovio; this
only happened once or twice). With the target object,
Rovio would occasionally hit obstacles while moving
sideways to keep the target centered, since its camera
can only see what is in front of it. The paths shown on
Fig. 4a and 4b are the paths taken by Rovio; see the
videos. Overall, the success rate of Rovio being able to
find and reach the target object without hitting an obsta-
cle was above 80%.

We also did a few tests in very different environ-
ments: specifically, in a hall with a reflective floor (the
hall outside Upson 317) and during the poster session
(in Duffield Atrium). We found that the algorithm per-
formed very poorly on a reflective floor: reflections
caused the floor to be split into multiple segments, so
Rovio would try to avoid obstacles that were not there.
In Duffield Atrium, the algorithm’s performance was
okay, though not as great as before; this was due to the
low lighting which caused the segmentation algorithm
to sometimes be unable to distinguish the brown boxes
we used from the floor, as well as the increased lag due
to many people attempting to use the wireless connec-
tion simultaneously.

5. CONCLUSIONS AND PROBLEMS
ENCOUNTERED

Our image segmentation method of detecting and
avoiding obstacles performed very effectively; the suc-
cess rate was very high. Nearly 100% of obstacle colli-
sions were due to Rovio moving sideways and colliding
with something that it could not see; if we could elim-

inate all sideways movement, the collision rate would
be almost 0%. The main difficulty that we encountered
was the lag inherent in our control method: by the time
we received an image to process, it was already out of
date. For forward and backward movement, this did not
present a problem since the image did not change much
when moving forward or backward, but when turning,
this presented a major problem. Due to lag and a high
minimum turning speed, we were unable to use turning
as a method for centering the target, as by the time the
algorithm saw that the target was centered, Rovio had
already turned too far; instead, we were forced to use
the unsafe sideways movement for centering.

Reflective floors also posed a difficulty for the algo-
rithm. Reflections of the overhead fluorescent lights in
particular caused the floor to be segmented into two sep-
arate segments, which resulted in Rovio attempting to
avoid obstacles that were not there. A possible method
for rectifying this would be to merge similar segments,
or possibly to use Rovio’s IR sensor to see if the obsta-
cles are real or not. Likewise, for future work, we would
like to be able to teach Rovio to not avoid flat “obsta-
cles” such as pieces of paper; again, using the IR sensor
would be a possible method. It might also be possible to
lift and lower Rovio’s camera to simulate stereo vision
and use that to figure out whether detected obstacles are
real or not. Another possible direction for future work
would be ramps: our algorithm makes extensive use of
the horizon line, so it would be unable to handle steep
or very long ramps, or other sudden changes in slope.1

Again, stereo vision would be useful here.

6. ACKNOWLEDGMENTS

• ROS 2

• OpenCV 3

• Cornell CS Robotics Lab at Upson 317

• Jonathan Diamond (for Rovio ROS drivers)

• Ashutosh Saxena (for guidelines and suggestions)

References

[1] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient
Graph-Based Image Segmentation,” International Jour-

1We did a brief test on a ramp, and found that physically, Rovio’s
motors aren’t powerful enough for it to perform well on a ramp, either:
Rovio tended to slip down, especially when moving laterally on the
ramp. Any future work in this direction would probably require a
different robot, or at least better motors.

2http://www.ros.org/wiki/
3http://opencv.willowgarage.com/wiki/



(a) Obstacle course 1 (b) Obstacle course 2 (c) Obstacle course 3

Figure 4: Obstacle courses

nal of Computer Vision, vol. 59, no. 2, pp. 167–181,
September 2004.

[2] T. Taylor, S. Geva and W. Boles, “Monocular Vision as
a Range Sensor,” in Proceedings of CIMCA, Australia,
2004.

[3] M. Kumano, A. Ohya and S. Yuta, “Obstacle Avoidance
of Autonomous Mobile Robot using Stereo Vision Sen-
sor,” in Proc. of the 2nd International Symposium on
Robotics and Automation, Monterrey, pp. 497–502.

[4] I. Ulrich and I. Nourbakhsh, “Appearance-Based Obsta-
cle Detection with Monocular Color Vision,” in 17th
National Conference on Artificial Intelligence, Austin,
Texas, 2000.

[5] S. Lenser and M. Veloso, “Visual Sonar: Fast Obstacle
Avoidance Using Monocular Vision,” in Proceedings of
IROS03, 2003.

[6] S. Choi, T. Jin and J. Lee, “Obstacle Avoidance Algo-
rithm for Visual Navigation using Ultrasonic Sensors and
a CCD Camera,” Artificial Life and Robotics, vol. 7, no.
3, pp. 132–135, September 2003.

[7] Y. Wang, S. Fang, Y. Cao and H. Sun, “Image-Based Ex-
ploration Obstacle Avoidance for Mobile Robot,” in Chi-
nese Control and Decision Conference (CCDC), 2009.


